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We consider systems of particles hopping stochastically on d-dimensional lattices with space-
dependent probabilities. We map the master equation onto an evolution equation in a Fock space
where the dynamics are given by a quantum Hamiltonian (continuous time) or a transfer matrix (dis-
crete time). Using non-Abelian symmetries of these operators we derive duality relations, expressing
the time evolution of a given initial configuration in terms of correlation functions of simpler dual
processes. Particularly simple results are obtained for the time evolution of the density profile. As a
special case we show that for any SU(2) symmetric system the two-point and three-point density cor-
relation functions in the N-particle steady state can be computed from the probability distribution
of a single particle moving in the same environment. We apply our results to various models, among
them partial exclusion, a simple diffusion-reaction system, and the two-dimensional six-vertex model
with space-dependent vertex weights. For a random distribution of the vertex weights one obtains a
version of the random-barrier model describing diffusion of particles in disordered media. We derive
exact expressions for the averaged two-point density correlation functions in the presence of weak,

correlated disorder.

PACS number(s): 05.40.4j, 05.60.4+w, 02.50.Ey, 75.10.Jm

I. INTRODUCTION

Stochastically hopping particles on a lattice represent
simple models for diffusion-reaction processes in various
media. The quantitative description of the time evolu-
tion starting from a given initial condition is naturally a
difficult problem, in particular if one deals with systems
of interacting particles rather than with a single-particle
problem. For special processes, however, there are dual-
ity relations allowing one to map the time evolution of
a given process to that of another process in which the
quantity one wishes to calculate is easier to obtain [1].
One particularly well-studied process is the symmetric
exclusion process. It describes a system of particles on a
lattice with exclusion interaction, i.e., such that each lat-
tice site is either empty or occupied by at most one parti-
cle. In each (infinitesimal) time step one particle can hop
from a lattice site = to another site y with certain prob-
ability pgy = py,.. For this model the time evolution is
very well understood [2]. For instance, the time evolu-
tion of the density distribution of the N-particle system
is completely determined by the probability distribution
of a single particle. The understanding is less complete
if one deals with partial exclusion, where each lattice site
can be filled by up to m > 1 particles, or in the case
of asymmetric hopping rates p, y # py,.. An even more
difficult problem is posed if reactions occur, i.e., if parti-
cles can be created or annihilated or change to a different
species of particles.

The main aim of this paper is to derive duality re-
lations from symmetries of the system dynamics. We
will map the state space of the stochastic model to a
Fock space, where the time evolution is described by
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a linear operator [3-13]. Particularly in one dimension
this mapping has proven to be a powerful tool as for
many equilibrium and nonequilibrium models the time-
evolution operator is given by (or related to) the Hamil-
tonian of an integrable quantum chain [6,13]. Thus part
of the vast amount of knowledge that has accumulated for
these models over the past decade and some of the meth-
ods applied for solving them such as the Bethe ansatz [6,
14] are useful also for the classical systems from which
the Hamiltonian was obtained and leads the way to new
predictions.

While the integrability of these one-dimensional mod-
els is ensured by the existence of an infinite set of mu-
tually commuting symmetry operators and is only valid
for specific choices of the coupling constants, many of
these systems have other non-Abelian global symme-
tries [such as SU(2) invariance] which are independent
of the coupling constants and are also present in higher-
dimensional analogs of these models. It is these symme-
tries of the d-dimensional models that we are going to
exploit.

In Sec. IT and in Appendixes A and B we show that the
known duality relations for the symmetric exclusion pro-
cess can be derived very easily from the SU(2) symmetry
of the corresponding time evolution operator (which is
a spin—% Heisenberg ferromagnet with space-dependent
coupling constants). Repeating the same calculation we
derive similar relations for SU(2) symmetric higher spin
models corresponding to partial exclusion where each lat-
tice site can be occupied by up to m > 1 particles. In
particular, we show that the time evolution of the den-
sity distribution of N particles for any SU(2) symmetric
system is given by the one-particle probability distribu-
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tion if initially each lattice site was occupied by at most
one particle. Furthermore, we extend our calculations to
(a) multitime correlation functions (a particularly simple
expression is obtained for the three-point density corre-
lation function) and (b) models with other symmetries.
The adaption of our calculation to systems with a given
symmetry is straightforward and allows for the derivation
of duality relations for a very wide class of models.

In Sec. III we apply our results to some specific inter-
acting many-particle systems, among them the random-
barrier model with partial exclusion. While the single-
particle probability distribution for a homogeneous sys-
tem (i.e., with translationally invariant hopping rates) is
easy to compute, this becomes a difficult task in the pres-
ence of disorder [15-23] or other inhomogenities. Single-
particle diffusion in a random-barrier environment is an
interesting field of physics, including phase transitions in
systems where the moments of the inverse hopping rates
do not exist [15, 16,24]. We give a brief review of some
known results which we generalize to many particle sys-
tems using our results of Sec. II. The symmetries studied
Sec. II occur also in processes which are not purely dif-
fusive. In order to illustrate this point we also discuss a
simple two-species reaction-diffusion model.

One obtains quantum Hamiltonians for processes in
continuous time, but one may also study stochastic pro-
cesses in discrete time. In this case the mapping to
a Fock space gives rise to a transfer matriz which for
many interesting problems in one dimension is related
to the transfer matrix of integrable two-dimensional sys-
tems such as vertex models [14,25-27]. In Sec. IV we will
utilize this mapping for a study of correlated disorder in
a particular version of the one-dimensional many-particle
random-barrier model with exclusion. While much is
known about the continuous-time single-particle random-
barrier model with uncorrelated disorder, where all hop-
ping rates p, are independently chosen random numbers
with some translationally invariant distribution y, only
few results are available about systems with spatially
correlated disorder [21-23]. Furthermore, these results
are not automatically applicable to the vertex-model ver-
sion of the process and we shall investigate the limits of
their validity. This mapping is interesting in itself as the
quantity we are going to study corresponds to the arrow-
arrow correlation function of disordered-vertex models.
We shall also point out the existence of another type of
phase transition for specifically chosen hopping probabil-
ities.

In Sec. V we summarize our results and in the Ap-
pendixes we present some details of our calculations to
Sec. II (in Appendixes A and B) and we repeat and gen-
eralize the mapping of Ref. [25] of the diffusion problem
to the six-vertex model (in Appendix C).

II. CORRELATIONS IN INTERACTING
MANY-PARTICLE SYSTEMS

In this section we will show how correlation functions
of interacting (generically disordered) many-particle sys-
tems are related to simpler quantities such as the proba-
bility distribution of a single particle moving in the same

environment. Examples are the relations arising from the
self-duality of exclusive diffusion [1,2]. We rederive them
from the SU(2) symmetry of the time-evolution operator
of this process and thereby generalize to arbitrary SU(2)-
invariant stochastic processes. In order not to complicate
our discussion we restrict ourselves in this section to sys-
tems containing only one species of particles. The gener-
alization of our approach to multispecies models is briefly
discussed in Secs. IIC and III B.

Let us consider a many-particle system on a d-
dimensional lattice described by stochastic occupation
numbers n = {n;}. Its dynamics are given by a mas-
ter equation of the following form:

Ot F (n,t) = _HIF(T_la t)a (2'1)

where H' is some linear operator acting on the n;. We
may also consider discrete-time dynamics where the time
derivative in'Eq. (2.1) is replaced by a discrete difference.
Instead of H' a transfer matrix T is then used (see Sec.
V).

According to Doi’s formalism the master equation is
mapped onto an evolution equation in Fock space [3,13,9]:

0| F(t)) = —H| F(t)) (2.2)

or a similar equation in the case of discrete time. The
solution of Eq. (2.2) can be written as

| F(t)) =U,| F(0)) with U, =e H* . (2.3)
(For a discrete-time dynamics U, after ¢ time steps is
given by the tth power T of the transfer matrix 7'.)

A particular configuration n corresponds to a state
| »n) = HJI.’=1(C})"J'| 0 ), where | 0 ) is the vacuum
containing no particles and L is the number of available
lattice sites. A vector in Fock space is decomposed as

| F(t) ) = X4n,3F(n,t)] n ) and a scalar product is

defined by (n|m) = [I}_,[n;'0n, m,] -

For noninteracting classical particles the creation op-
erators c;f acting on site j and their adjoint operators
¢j, which annihilate particles, obey bosonic commuta-
tion relations [3]. If we consider a system of particles
with exclusion, i.e., if at most one particle is allowed to
be on each lattice site, the creation and annihilation op-
erators fulfill Pauli-type commutation rules: operators
on the same lattice site have fermionic anticommutation
relations whereas operators for different lattice sites com-
mute (7, 9]. For simplicity we will refer to exclusive par-
ticles as fermions. In the more general case, where up to
m particles can occupy one lattice site, the creation and
annihilation operators can be represented by spin-m/2
ladder operators of SU(2). We call this situation partial
exclusion.

Here we are interested in the time evolution of a given
initial configuration and in particular in steady-state cor-
relation functions. If the physical quantities A(n), B(n),
and C(n) are analytical functions of the occupation num-
bers we find [28]

(A(t)B(0)) =( s |AU; B| F(0) ),
(A(22) B(t1)C(0)) = ( s |AU¢,—+, BU,,C| F(0) ),

(2.4)
(2.5)
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with ( s | = (0 |exp(3_;¢;) [3,7] and A, B are the
corresponding functions of the particle number operators
n;. Because of the normalization condition

(s|H =0, (2.6)

which has to be valid for any H describing a stochastic
process, we may insert U_; between the first two terms
on the right-hand side (rhs) of Eq. (2.4) and obtain an
expression very similar to the one in ordinary quantum
mechanics. Note that averages are linear in the probabil-
ity distribution here while they are bilinear in the state in
quantum theory. For special problems, however, linearity
and bilinearity may coincide [see (2.21)].

Of particular interest are two-point correlation func-
tions of particle numbers in a steady state. For the mo-
ment we restrict ourselves to systems with particle con-
serving dynamics. As shown below (see Sec. IIIB) this
condition can be relaxed for many-species models. The
two-point density correlation function in the steady state
for a N-particle system is given by

GN(I»y;t) = <n:c(t)ny(0)>sh (2.7)
where a subscript = denotes the label of the lattice site
corresponding to a position z in space and n, is the par-
ticle number in z. Averaging is performed over the sta-
tionary N-particle state.

The connected two-point correlation function is defined
by

Cn(z,y5t) = ({ne(t) — (nz)st} {ny(0) — (ny)ge P et
(2.8)

where the arguments ¢ and 0 are dropped in the one point
averages, because (n;(t))st does not depend on time. In a
similar way we define the connected three-point function
as

Dn(z,y,z3t2,t1) = ({nz(t2) — (na)st} {ny(t1) — (ny)st}
x{n2(0) — (nz)st}) g¢- (2.9)
First we consider a system with one particle only. It

can be described using a master equation (2.1) or much
easier by means of the following probability distribution:

P(z,t;y,0) = P(z,t|y,0)P(y,0), (2.10)

which gives the probability of finding the particle in y at
time 0 and in x at time t. The first expression on the
rhs is the corresponding conditional probability. For the
two-point correlation function defined above we obtain

(1)
> nenyF(n,t;n/,0)
{n;}1{n}}
= P(z,t|y, 0)Pst(y), (2.11)
where F'(n,t;n’,0) is the combined probability of config-
uration n at time ¢ and n at time 0. [A superscript (k)
at the sum means that the sum runs over states with a

total particle number k only.] Assuming, furthermore,
the steady state to be homogeneous we get

Gi(z,y;t) =

1

Our aim is (a) to express the N-particle correlation

functions Cny and Dy in terms of the one-particle dis-
tribution P(z,t|y,0) and (b), more generally, to express
the time evolution of an N-particle initial configuration
in terms of correlators in sectors with less than N par-
ticles. The latter quantities are generally easier to com-
pute. Problem (a) is just a special case of problem (b).

A. The fermionic case

First we study the fermionic case, i.e., systems of par-
ticles with total exclusion (each site can be occupied by
at most one particle).

We will study systems the dynamics of which are given
by an arbitrary SU(2)-symmetric Hamiltonian H, i.e.,

(2.13)
(2.14)

[H’ Si]— =0,
[H,5]_ =0

where S%# are the generators of SU(2). (In the discrete
time case H has to be replaced by the transfer matrix
T)

As demonstrated in the example of Sec. IIIB it is
actually sufficient to demand the symmetry to hold in a
subspace of H. We would like to stress that the SU(2)
symmetry is not a technical assumption but the main
ingredient leading to the results derived below.

It is easy to check that in the fermionic case the oper-
ators

L L L
R MR SR S )
j=1 j=1 j=1
(2.15)
with n; = c}cj satisfy the commutation relations of

SU(2). Introducing Pauli matrices o; = {c; +cj, —i(c; -
¢j),1 — 2n;} we can write the general form of a SU(2)-
symmetric Hamiltonian for the stochastic time evolution

of exclusive particles as

1
H=-5 kaj,k(t) (050 — 1]
7

1
-3 > Pikam(t) [o50% — 1] [o10m = 1 + -,
i k,lm

(2.16)

where the generically time-dependent quantities 0 <
p...(t) < oo are arbitrary real-valued functions of t. [For
multispecies models they can be operators commuting
with the generators (2.15).] The summations over n pairs
of indices kq,...,ks, Tun over theset 1 < k; < ky < k3 <
ky < --- < kon_1 < kan < L, where L is the number of
sites in the d-dimensional lattice.

As a consequence of the symmetry some interesting
properties result.

(i) The number of particles in the system is a conserved
quantity because of Eq. (2.14).

(ii) The Hamiltonian is Hermitian.

(iii) Because of the normalization condition (2.6) and
the commutators (2.13) we find
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H|N)=0 with |N)= %(s-)Nm) (2.17)
and
(N|H=0 with (N|=7(0|(SHY. (218)

Hence the normalized N-particle state (N < L)

| N )aorm = (,f,)_1|N> - (ﬁ)_1§|n> (2.19)

is a stationary solution of the problem assigning the same
probability to any possible configuration of the n;, which
has a total particle number N. [The summation in (2.19)

runs over states with n; = 0,1 and Zf:l n; = N
The averaged occupation numbers in state | N }porm are
(nz) = NJ/L .

From Eqgs. (2.4) and (2.7) we find for the two-point
correlation function

Gf{}"“(z,y; t) = ( s [nzUny| N dnorm, (2.20)

where the steady states (2.19) are used. Because of

(s]| = E§=o< N |, particle conservation and the or-
thogonality of the | N ) we get

( 1{7) G™(z,y;t) = (N noUsny | N ). (2.21)

Using the SU(2) symmetry the following recursion re-
lation can be derived from Eq. (2.21) [see Appendix A,
Eq. (A8)]:

_L-N-1N+1

Gyt = T —x— 3 ON (@ ut)
1N+1 R
E—L—-——N . (224)

From this one finds an exact expression for Gy in terms
of Gy:
L-N

CN™(@t) = N7 6™ (wit)

JN¥N-1
LL-1’
(2.23)

which reduces in the thermodynamic limit L,N —
00, p = N/L =const to

Gl™(z,y;t) = N(1 — p)GEe™(z,y;t) + p2,  (2.24)

~where p is the mean density of the N-particle system.
Inserting Eq. (2.12) into Eq. (2.24) and using the defini-
tion (2.8) of the connected two-point correlation function
we find

CR¥™(z,y;t) = p(1 — p) P(x, t|y,0) .

Equation (2.25) is symmetric with respect to p < (1—p).
This reflects the particle-hole symmetry in a system
where occupation numbers are restricted to 0 and 1 only.
The amplitude of the correlation function has its maxi-
mum at p = 1/2.

Following a similar procedure as above we find for

(2.25)

the connected three-point function in the thermodynamic
limit

Dﬁrm(xay, Z; t2,t1)

= (p — 3p® + 29°) P(z, t2|y,t1) P(y, t1]2,0) . (2.26)

Note that this quantity vanishes for p = 1/2.

Because the properties of a one-particle system are
well-known for many environments, Eqs. (2.23), (2.25),
and (2.26) provide a useful tool to study (finite or infi-
nite) many-particle systems in any dimension provided
the SU(2) symmetry holds (at least for a subspace).

A more general duality relation allowing one to map
an M-particle process onto a process with N < M par-
ticles was proved by Spitzer [2] for exclusion processes
with constant symmetric hopping rates. We will show
how this relation arises from the SU(2) symmetry of the
Hamiltonian.

Instead of studying a master equation for occupation
numbers {n;(t)} we may consider the stochastic quan-
tity An(t) which is the set of lattice sites occupied at
time t (NN is the particle number). The dynamics of the
system are then completely described by the probability
distribution Pc[An(t) = B, i.e., by the probability that
the stochastic process Ay(t) has the value B at time ¢
provided it started with the value C. More general quan-
tities are Pc[An(t) C B] and Pc[An(t) D B] giving the
probabilities for Ay (t) C B and An(t) D B, respectively,
under the condition Ay (0) = C.

We consider two processes Ay (t) and Aps(t) describing
an N-particle and an M-particle system moving in iden-
tical environments. Using the SU(2) symmetry of the
time evolution the following duality relation is proved in
Appendix B:

Pa, [Am(t) D AN] = Pay[An(t) C Ay] . (2:27)

The probability to find all points of Ay occupied at time
t by the process Aps(t) with Apr(0) = Ay is equal to the
probability that all particles lie in Aps for the process
An(t) with An(0) = Ay. This statement is the same
as in [2], but the class of processes considered here is
more general than those discussed by Spitzer. The SU(2)
symmetry is the main property ensuring (2.27).
In terms of correlation functions Eq. (2.27) reads

<M II ~ve I = M>

iI€EAN JEAM

= > (N |IIwv [ N) . @29

BCAM JjEB i€EAN

where B are sets of IV lattice sites. Choosing N =1 in
(2.28) one obtains the above relations for two-point func-
tions. For the time-dependent density profile pa,, (x,t) of
system which starts with initial configuration Ay (2.28)
gives

pay(zt)= Y pmi(zt) -

B;CAN

(2.29)
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This rephrases the known validity of Fick’s law for exclu-
sive diffusion.

B. Partial exclusion

In Sec. ITA we have studied models with total exclu-
sion such that each lattice site can be occupied by at most
one particle. Now we turn to partial exclusion, where up
to m particles can sit on a given site j. Besides this being
interesting in its own right, one arrives at such a model
via real-space renormalization of the fermionic model.

In this case the occupation numbers n; can take the
integer values 0 < n; < m. Translating these properties
into operator language leads to a representation in terms
of spin s = m/2 matrices. The number operator n; is
given by the matrix m/2 — s7 and the creation and an-
nihilation operators are defined as s;|..n;..) = (m +1 —
n;)|..n; + 1..) and s;|..nj..) = (n; + 1)|..n; — 1..). The
latter ones satisfy the SU( ) algebra [s;", s;. ] = 201,ms?
and [ s, m] = +6; ms, . As above we assume the time-
evolution opera.tor to commute with the total spin oper-
ators S*% = 3 s %% For spin s the most general SU(2)
symmetric Hamlltoman reads

-3 Zp("’(t) ojou]

J,ku 1

=¥ E Pyt (?)

J,kln um,rv=1

H=—p(

) o0k [o100]" +

(2.30)

It describes processes where particle jumps from site j to
site k have probability rates proportional to n;(m — nk).

Note that for special choices of the functions p(’“’ (t)
the symmetry can be higher than SU(2) (see below). The
powers of the matrices ;o = 2(3;-'3,; +s;sz+2sisj) al-
low for the possibility that more than one particle jumps
in each time step.

As the calculations of Sec. II A are based only on
the symmetry and not on the properties of the spin-%
representation they can be repeated here. In particu-
lar, the analogs of Eqs. (A3) and (A4) are (N|s; =
(N —1|(m — n;) and (N|S™ = (N = 1|(mL — N + 1).
Equations (A1), (A2), and (A5) remain unchanged after
replacing ¢! by s~ and ¢ by s*. Egs. (2.17) and (2.18) are

J

12L-N—-k N-—k

2 N+1—-k 2k—N+2
1 2k+1—N

TNY1-k k+1

PAk-H [AN+1(t) D Ak] =

Z PA,'[AN(t) D) Bk],
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still valid with the operators S* defined by Egs. (2.15)
with the above replacment. Using these relations and the
normalization condition

| N Juorm = (";,L)*\m

one can again write down and solve a recursion relation
in N for the two-point function (2.7). One finds

(2.31)

NmL-N NmN —m
Gn(z,y;t) = 7o —7 Pty 0) + 77—
(2.32)

and therefore for the connected two-point function in the
thermodynamic limit

Cn(z,y;t) =p (1 - ?%) P(z,t|y,0),

where again p = (ng)s¢ = N/L. The amplitude is
symmetric under p — m — p and has its maximum
at p = m/2. (m is the maximum number of parti-
cles allowed on each lattice site.) In these expressions
P(z,t|y,0) is again the probability distribution for a sin-
gle particle moving in the environment defined by the
coupling constants pi) (t). Note that P(z,t|y,0) does
not depend on m and not on the coupling constants
pi’f‘"__ with upper (greek) indices larger than one. These
coupling constants give the probabilities that more than
one particle jumps at the same time. For m = 1 one
recovers the result (2.25) of Sec. ITA.

Duality relations such as Eq. (2.27) exist for higher
spins as well. They are established as demonstrated in
Appendix B. Only their structure is not as simple as for
the s = 1/2 case in general. As an example we give a
result for s =1 (m = 2).

As in Sec. IT A the system dynamics are described by
a set Ag(t) of occupied lattice sites. Contrary to the
s = 1-/2 case this is not a complete description here, be-
cause it does not specify which of the sites are doubly
occupied. (A complete description using two sets results
in more complicated duality relations than the one de-
rived here.) Let Pc[An(t) = B] be the probability that
the process Ay (t) has the value B at time t under the
initial condition |F¢). The state |F¢) assigns equal prob-
ability to all configurations contained in C. In a similar
way we define Pc[An(t) C B] and Pc[An(t) D B]. One
possible duality relation reads

(2.33)

PAk+1 [AN(t) ) Ak]

(2.34)

Br CAk+1

where N is a particle number and the index £ < N gives
the cardinality of the set Ag.

Now consider £k = N where each site in the initial set
Ay, is occupied by exactly one particle. Iterating (2.34)
we obtain (2.27) and consequently (2.29), which therefore
are also valid for partial exclusion. We conclude that for
an initial condition where each lattice site is occupied by
at most one particle the dynamics of the density profile
is determined by the one-particle probability distribu-

—
tion, irrespective of the possible double occupancies in
intermediate states. This remains true for arbitrary spin
s = m/2. But as opposed to the case of total exclu-
sion, the initial condition Ay is a special choice here.
For an arbitrary initial conditjon and arbitrary spin one
can find other expressions for the time dependence of the
density profile. It turns out that it is given in terms of
the probability distributions for l-particle systems where
1 <! < m. This can be shown using the selection rules
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for matrix elements of SU(2). The calculation of similar
relations for higher spin is lengthy but remains straight-
forward.

C. Other symmetries: The bosonic case

From our discussion it is clear that similar recur-
sions and duality relations can be obtained if the time-
evolution operator has non-Abelian symmetries other
than SU(2) (Abelian symmetries do not lead to degenera-
cies which are essential in our calculations). A simple ex-

ample is the Hamiltonian (2.30) with pg,llz = pf,z =...=

pg.:;:) and all other coupling constants 0. In this case H
is SU(m + 1) symmetric and describes the fully symmet-
ric diffusion of m species of exclusive particles. Here the
higher symmetry allows for additional relations which we
do not want to write down. Also the g-deformed versions
of these symmetry algebras can be used to obtain results
of similar nature. In this case the time-evolution oper-
ator describes driven diffusion in media with reflecting
boundary conditions [29].

Another special case which we want to discuss in more
detail is a Hamiltonian commuting with generators N =
Ec;cj and S* (2.15) of a harmonic-oscillator algebra

with [c}, ¢k ] = ;. This corresponds to noninteracting
particles.

As in the fermionic case the total particle number is
conserved, H is Hermitian, and Eqgs. (2.17) and (2.18)
result from the symmetry (2.13). Only the normalization
constants and the explicit form of the steady states are
different:

(N) L
N! N! 1
IN)norm=LN|N)=LN§: ||n| Iﬂ)'

{n;} \s=1 7’
(2.35)

These states correspond to homogeneous probability dis-
tributions as for fermions. If the system is in the state
| N Ynorm any configuration with particle number N has

a probability proportional to Hf':lﬁ .
In a way analogous to that in Sec. II A we find a re-

cursion relation

GRS (2, y3t) = ]—V—;—IG?&"“(E, yit) + EE—:—I
(2.36)
from which follows
GB*°" (z,y;t) = NGYo**"(z, y; t) + p? (2:37)

in the thermodynamic limit. Instead of Eq. (2.33) we
obtain for the connected two-point correlation function
for bosons

CR*°"(z,y, 2) = pP(z,t|y,0) . (2.38)
The probability on the rhs is the same as in the fermionic

case because there is no distinction between fermion and
boson for a single-particle system. The amplitude of the

correlation function can be obtained from the model with
partial exclusion by taking the limit m — oco. This gives
a quantitative description of the effect caused by the par-
ticle exclusion for the class of systems considered here.

III. APPLICATIONS
TO CONTINOUS-TIME PROCESSES

In this section we illustrate our results in several mod-
els. First we observe that double-hopping processes,
i.e., pieces in the Hamiltonian proportional to a term
0O 100, With k,l,m,n pairwise different, can be ig-
nored as long as one is interested only in the two- or
three-point functions (2.8) or (2.9) or in the dynamics of
the density pg,(z,t) = (N|nyU;|Fo). (Here |Fp) is some
arbitrary initial condition.) The double-hopping oper-
ators do not change the steady state and do not enter
the dynamics of these quantities which are completely
determined by the single-particle excitations. We shall
therefore consider in this section only Hamiltonians H
with single-hopping operators.

A. Many-particle diffusion
in a random barrier environment

A well-known example is the diffusion of exclusive par-
ticles in a random environment which is constant in time
[1,2,22]. Here we consider a system of partially exclu-
sive particles. Our discussion is to a large extent a review
and rederivation of known results which we shall use for
comparison in Sec. IV.

In one dimension the time evolution is defined by the
Hamiltonian (see also [7, 12])

H=- Z{p"[c}“c" - CJ'+1C§+1C}CJ']
J

+pj-1le]_iej —cjosel_cle;]} (3.1)

=—%ij[°’j°'j+1 —-1] . (3:2)

This is the Hamiltonian of a generalized Heisenberg spin-
s ferromagnet with space-dependent spin-spin coupling.
The local hopping probabilities 0 < p; < co are random
numbers with distribution . We shall use the notation Q
for averages of quantities Q with respect to u. In particu-
lar, we denote the mean value of p, by p and its variance
(pz —Pz)? by 02. (We assume u to be translationally
invariant.)

The SU(2) symmetry of H is obvious for each realiza-
tion of the environment and p = N/L is the same for
each realization. Hence we can average the linear equa-
tions (2.33) over the environment. Without any addi-
tional calculation one immediately obtains the result

Cn(z,uit) = p (1- 2) Pla, tly,0) - (3.3)
Equation (3.3) gives the averaged two-point correla-
tion functions for the many-particle system provided
P(z,t|y,0) is known. The latter quantity is the averaged
solution of the one-particle master equation
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0,P(z,t|y,0) = pz[P(z + 1,t|y,0) = P(z,t|y,0)]
+po—1[P(z — 1,t|y,0) — P(z,t|y,0)] .
(3.4)

The exclusion interaction enters only in the amplitude of
the correlation function.

We briefly review some known results for the one-
particle process. The simplest case is that of classical
diffusion, i.e., with deterministic p, = D Vz, for which
P(z,tly,0) = P(z,t|y,0) is well known from textbooks
[30]. For z,t > 1 it is given by

1 22
P(z,tly,0) = e aDt 3.5
and its Fourier-Laplace transform S(k,w) is
= 1
Sk,w) = ——— . .
(kw) = = s (3.6)

Next we consider a random-barrier environment where
the hopping rates 0 < p, < oo are distributed with
a measure p which is translationally invariant and er-
godic. These assumptions are sufficient to show that
the stochastic process defined by H (3.1) converges to
Brownian motion in the limit =, — oo with 2%/t =const
[22]. Here we are interested in the correction to Brown-
ian motion of the averaged process for = and ¢ large, but
finite.

If we also assume that u is a product measure, i.e., if
the hopping rates p, are uncorrelated random variables,
then the short-wavelength low-frequency behavior of the

Fourier-Laplace transform S(k,w) of P(z, t|y, 0) is known
[15-20]. One introduces a generalized diffusion constant
D(k,w) by writing

= 1
= 3.7
and finds (18, 19]
D(k,w) .——D0+D1\/E+D2w + .-

Here D; and E; are functions of the moments p; =

(p~! — p~1)! of the inverse hopping rates. Expanding
them around D = p and neglecting higher powers of o2
as well as higher moments o; = (p — p)*

one obtains

Do=p1x~D-0o*D7}, (3.9)
1 1
D1 = EDg/z 2 = 50’2D_3/2 . (310)

Within the framework of our approximation D, is 0 and
Eo = Do/12, E; = D1/12, and we can write

D(k,w)=D (1 - ﬁ) <1 - -;—22(1 - %@)) )

12
(3.11)
]
011 0 —i—i

1 1
7F = 100 ,~y= 1 00
7 ViI-B\goo T VI=B\igo o
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The prefactor 1—k?/12 has its origin in the Fourier trans-
form of the lattice Laplacian and is present also in the
ordered system. Up to order o2 the uncorrelated disor-
der affects only the time dependence of the correlation
function. For w,k — 0 and w/k? fixed one finds from
(3.5) the diffusion constant Dy = p—1.

The problem of corrections to Brownian motion in the
case of correlated disorder has been addressed in [21] and
(23]. In Sec. IV we will study this problem for a differ-
ent exclusion process, described by the transfer matrix
of the six-vertex model and show under which conditions
disorder correlations are negligible.

B. A simple diffusion-reaction model

The two-species model we are going to study next is an
example for a system where the SU(2) symmetry holds
only in a subspace. In this subspace, which contains the
steady states, we will find simple expressions for correla-
tion functions.

Consider two species A and B (the corresponding op-
erators are denoted with an upper index) diffusing and
reacting on a lattice. Each site may contain one A par-
ticle or one B particle or it is empty. A certain config-
uration corresponds to a Fock space vector of the type
|AA0BO..) where an A at the jth position means the
site j is occupied by an A particle and similar for B and 0.
The dynamics is assumed to be based on next-neighbor
interactions only. It is defined by the infinitesimal time
transitions

104) — |A0>+1—€—ﬂ|30),

1+
&
1+

aB
1+

g
mlOB)»
B
1+8

|0B) — |A0) + | B0),

|A0) — |0A4) +

1+8
a

|B0) — 1575

104) + |0B), (3.12)

where the indicated states are supposed to represent the
occupation of nearest neighbor in a d-dimensional lat-
tice. All other possible pairs of configurations remain
unchanged. Equations (3.12) describe diffusion with con-
stant, space-independent hopping rates as well as reac-
tions A — B and B — A, which are coupled to the
jump events. We will assume o = 1 in which case H has
an SU(2) invariant subspace.

Writing the probabilities of occupations 0, A, and B
for a single site j as a column vector ¥ we may introduce
matrices

o
[T e)

(3.13)

l
N
I
o O
I
[y
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The system dynamics is then given by the Hamiltonian

1 o
H=—§Z(Tj1‘j+1—1) .

J

NON-ABELIAN SYMMETRIES OF STOCHASTIC PROCESSES: ...

The symmetry properties become obvious after a basis transformation given by the matrix

VIFB 0 0

U= 0 11
0 -81
The 7 matrices transform to
T = U‘T‘jU_l,
which read explicitly
1 010 1 0—-i0
7= 100 },r¥= 100
7 V1-Blooo ) 7 Vi-Blooo

The components of the transformed column vectors
v = U® can be understood as the probabilities of occupa-
tions 0, a, or b at the lattice site j, where quasiparticles
a and b are introduced. Their dynamics are described by

H= —% S (i —-1) . (3.18)

3

From Egs. (3.17) and (3.18) we see that no b particles are
produced and that the weight of b occupation at any lat-
tice site decays exponentially in time. Hence the steady
state contains no b particles. Consequently, considera-
tion of the dynamics in the b-particle free subspace gives
all the information necessary for the analysis of steady-
state correlations. In this subspace; which is invariant
of course, the o matrices reduce to Pauli matrices, i.e.,
the dynamics is SU(2) symmetric there. All the results
from Secs. ITA and IITA apply to the dynamics of a-
occupation numbers then. Translating this in expressions
for A- and B-occupation numbers we find

A 1
st = ——=P, 3.19
(n)e = 1350 (3.19)
B B
st = ——=p, 3.20
where
L
p=N/L= Z(ng),,/L with n2 =nf 4 nB
z=1
(3.21)

is the particle density.

)

z
Tj
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(3.14)
(3.15)
(3.16)
) 10 0
= 0-10 (3.17)
VI-B\ o0 -1

[

Because of Egs. (2.25) and (3.5) we find for
z,t,L, N > 1 the following connected correlation func-
tion:

1

(n: (t)nZ(O»St \/‘m

Hence the number of particles at a lattice site shows dif-
fusive behavior and the averaged number of B particles
at a given lattice site z and the averaged number of A
particles there have a constant ratio 5. Choosing a # 1
breaks the SU(2) symmetry and the correlations become
more complicated.

_(z-»?
4t

e (3.22)

—p*=p(1-p)

IV. CORRELATION FUNCTIONS IN A
RANDOM-SIX-VERTEX MODEL

In this section we restrict ourselves to one space di-
mension only and consider discrete-time dynamics. It
was shown by Kandel et al. that the diagonal-to-diagonal
transfer matrix of the six-vertex model for a certain one-
parameter family of vertex weights describes diffusion of
particles with exclusion in one dimension [25]. In this
mapping the vertex weights are hopping probabilities p
and the time evolution proceeds along one diagonal of
a square lattice while the space extends along the di-
agonal perpendicular to the time diagonal (see Fig. 1).
They consider the standard case where the vertex weights
do not depend on the position of the vertex in the two-
dimensional lattice. As in Sec. III we want to study
space-dependent hopping rates. In the framework of the
mapping to the vertex model on a square lattice this is
achieved by introducing vertex weights which are con-
stant on the time diagonal of the lattice but vary along

KX XK XX

4

FIG. 1.

P 1-p 1-p

Allowed vertex configurations in the six-vertex model and their Boltzmann weights. Up-pointing arrows correspond

to particles, down-pointing arrows represent vacant sites. In the dynamical interpretation of the model the Boltzmann weights
give the transition probability of the state represented by the pair of arrows below the vertex to that above the vertex.
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the space diagonal. For the convenience of the reader we
repeat this mapping in Appendix B and generalize it to
arbitrary space-dependent vertex weights.

A study of this model is interesting for several reasons.
First of all, the calculation of correlation functions for
the vertex model is interesting in its own right. Kandel
et al. derived an expression for the connected two-point
function (2.8) only for the special value p = 1/2. Here
we derive the exact expression for arbitrary values of p.
Second, the vertex model describes an exclusion model
with simultaneous many-particle hopping and it is not a
priori clear whether the known results for the continous-
time process with single-particle hopping quoted and par-
tially rederived in Secs. IT and IIT A hold in this model.
Third, for hopping rates p ~ 1, the model indeed does
not have diffusive behavior, instead particles move rela-
tivistically close to their light cone. The vertex model is
in so far more general than the continuous-time model
and we shall study the crossover from relativistic motion
to classical diffusion.

The dynamics of the exclusion process which leads to
the generalized transfer matrix of the six-vertex model
are defined as follows: We present the state of the system
with L sites (L even) at time t by the quantity n(t) =
{n1(t),na2(t),...,nL(t)} where n,(t) counts the number
of particles on site  and can take the values 0 or 1. The
time evolution consists of two steps. Suppose the system
is in the state n(t) with ¢ an integer. In the first half-time
step t — t + 1/2 we divide the chain of L sites into pairs
of sites (1,2), (3,4), ..., (L — 1, L). If both sites in a pair
(22 — 1,2z) are occupied or empty then they remain so
with probability 1. (We exclude the possibility of particle
creation or annihilation.) If there is one particle and
one hole then the particle hops to the unoccupied site
in the pair with probability p2,—1 and remains where it
was with probability 1 — py, ;. Note that the hopping
probability in such a pair is the same for both directions,
i.e., it does not depend on whether the particle is on site
2z — 1 or on site 2z. These hopping rules are applied in
parallel to all pairs in the chain. In the second half-time
step t+1/2 — t+1 we shift the pairing of the chain by one

lattice unit such that the pairs are now (2,3), ... (L,1)
J
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(we assume periodic boundary conditions). We apply the
same rules as above, but the hopping probabilities in a
pair (2z,2z + 1) are now pz,. From these rules one can
derive a master equation for the probability distribution
F(n,t) (2.1).

Instead of working with a master equation, we directly
study the transfer matrix 7', which encodes these hopping
rules as discussed in Sec. II. We choose as a basis of
the Fock space, the same basis as in Sec. III where the
presence of a particle corresponds to spin down and the
absence of a particle corresponds to spin up. Then the
transfer matrix is given by

L/2 L/2
T =TT = [] To;(p2s) [[ Tos-1(p2s-1),  (41)
7=1 i=1

where

Ti(p;) = 1 - B (o5051) (42)
with the Pauli matrices 0®¥*. The time-evolution oper-
ator T* for t time steps is defined as the kth power of T
if t = k is integer and as T°4T* if t = k + 1/2. We use
periodic boundary condition and occasionally label the
spatial indices from —L/2 to L/2 — 1. (Because of the
periodic boundary condition they are defined mod L.)
The local transfer matrices T;(p;) act as unit operator
on all sites except on the pair (z,7 + 1). The SU(2) sym-
metry of T is obvious and therefore the time-dependent
connected two-point correlation function in the steady
state

Cn(z,y;t) = (s |n,,Ttny| N) - p? (4.3)

in the sector with N = pL particles is given by the cor-
relation function G;(z,y;t) in the same environment in
the one-particle sector as in (2.25). This is true for any
choice of the p; and we can restrict our discussion to the
one-particle sector as in the continuous-time case. We
shall omit the index 1 in the correlator and simply write
G(z,y;t). In order to avoid boundary effects we shall
furthermore work in the thermodynamic limit L — oo.
In the one-particle sector one finds (see Appendix C)

(1 = p2—1)G(z,y;t) + po—1G(z — 1,y;t), = even

G(z,y;t+1/2) =

(1 - pz)G(z,y5t) + pG(z + 1,y31),

In the same way one obtains

(1 = p2)G(z,y;t +1/2) + pG(z + 1, y;t + 1/2),

Glz,y;t+1) =

(4.4)
z odd.

T even
(4.5)

(1= pz—1)G(z,y5t +1/2) + pe—1G(z — 1,y;t +1/2),  odd .

From these recursion relations, which are the analog of
the master equation (3.4), together with the initial con-
dition

one can compute the exact correlation function for arbi-

trary values of the local hopping probabilities p,. Note

that these hopping rules are not left-right symmetric.
The simplest nontrivial case is the homogeneous model

[
ps = const = p. In this case the system is invariant

under translations by two lattice units and G(z,y;t) =
G(z + 2z,y + 2z;t) depends only on whether y is even
or odd and on the distance r = ¢ — y. For the special
choice p = 1/2 the correlation function was computed (in
a different way) by Kandel et al. [25] (see Appendix B).

We find that for arbitrary values of p the solution to the
recursion relations (4.4) and (4.5) with initial condition
(4.6) for z even and t integer is given by
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t—|r|/2
G(z,4t) =P"_r e+
k=1

t—(|r|-1)/2
G(z,y;t) =
k=0

For z odd and t integer one finds

G(z,y;t) = G(y,z; t), y even
G(z,y;t) =Gy + 1,z + 151),

(4.9)

yodd . (4.10)

The correlator for half-odd integer values of t is given by
relations (4.4). For finite densities p = N/L one obtains
the exact connected correlation function (in the thermo-
dynamic limit) by multiplying the expressions (4.7) by
p(1 — p). Note that for p = 1/2 these expressions sim-
plify considerably and we recover the result of Ref. [25]
[see Eqs. (B7)-(B10) in Appendix B].

Now we study some limiting cases. In the limit r,t —
oo with 72/t fixed the distinction between even and odd
distances vanishes and the correlator has the form

Cn(r,t) = p(1 — p)(4nDt)~Y/2¢=7"/4Dt (4.11)

with the diffusion constant D = p/(1 — p) which estab-
lishes the diffusive behavior of the process for p # 0, 1.
For p = 1 the correlation function reduces to the &
function Cn(r,t) = p(1 — p)d+r 2t for even distances and
Cn(r,t) = 0 for odd distances. In this case the process is
not diffusive. The correlation function is invariant under
the scale transformations r — Ar, ¢ — At corresponding
to a dynamical exponent z = 1 as opposed to z = 2 for
normal diffusion. This result can be understood as fol-
lows: If p = 1, particles which are on odd lattice sites
at integer time steps move to right at a constant rate
of two lattice units in space direction per full time step
while particles on the even sublattice move to the left
with same velocity which is the velocity of light in the
system. Thus we have a system of noninteracting mass-
less relativistic right and left movers. More generally, the
distinction between even and odd space coordinates be-
comes physically meaningful in the limiting case when all
p; are close to or equal to one. If p is not equal but close
to 1, one expects the particles to remain relativistic but
massive. For times smaller than a crossover time scale
& ~ 1/(1 — p) the correlator is nonvanishing only near
the light cone and for even distances. On larger time
scales the system converges to Brownian motion. This
feature of the vertex model makes it more interesting
than the continuous-time formulation by the Hamilto-
nian (3.1), which allows only for nonrelativistic diffusion.
The homogeneous massive system is studied in detail in
[31].
Now we study the average behavior of the correlation
function in a random environment. We assume all p, to
|

(t —kr/2) (t —k1 _+1r/2

(t - (rk— 1)/2) (t + (rk— 1)/2) o1 )%y odd

)pZt—zk(l _p)Zk’ y even

(4.7)

(4.8)

—
be distributed in the interval 0 < p, < 1 with a trans-
lationally invariant distribution p. From the results ob-
tained in [22] one might guess that if u is ergodic, the
process will converge to Brownian motion as it does in
the continuous-time case for hopping rates 0 < p, < co.

From our discussion in the preceding paragraph we see
that one has to distinguish two cases. (a) 1 — P is of
order 1/t: Expanding the averaged correlation function
Cn(r,t) to lowest order in the moments of the distribu-
tion p gives the correlator of a homogeneous system with
fixed hopping rate p. As shown above in this case the
process is not diffusive and therefore the guess is wrong.
(b) 1—p is larger than of order 1/¢: Here the lowest-order
term is of the form (4.11) with D = /(1 — p). In what
follows we compute the next nonvanishing contribution in
the expansion of C y(r,t) and show that to this order the
guess is correct. Furthermore we shall compute explic-
itly the contribution to the correlation function arising
from disorder correlations and make a comparison with
the result reviewed in Sec. III for uncorrelated disorder.

We introduce the quantity

(4.12)

For the sake of technical simplicity we choose as mean
value p = 1/2 corresponding the diffusion constant D =
1. As long as P is not close to 1, such a choice has no
qualitative influence on the averaged correlation function.
Furthermore we shall assume that the hopping probabil-
ities of even and odd lattice sites are uncorrelated,

Az 1024, =0

Azzpt_ﬁ .

(4.13)
while the correlations

A2:|:A2y = A2;v—-1A2y—-1 = Zh(zy)&r,zu

(4.14)

depend only the absolute value of the distance r =
|2y — 2z|. The quantity h(0) = o? appearing in the sum
on the rhs of Eq. (4.14) is the variance of A,. Finally,
we consider only distributions which are sharply centered
around their mean value such that higher moments such
as Az AgyAs,, etc. can be neglected in a perturbative
expansion of the averaged correlation function in the mo-
ments of p,.

With the definition (4.12) of the quantities A, we
write A°9d = A3dd 4 A°dd and analogously A°Vve® =

Agven 4 Aeven, A°4d(even) 5re the one-particle transfer

matrices with all p, = 1/2 (see Appendix C). The aver-
aged correlation function is averaged matrix element

G(x, y;t) = (At)z,y — (:l,' l(AO + AgvenAodd + AevenAgdd + AevenAodd)t' y) .

(4.15)

Neglecting all pieces with more than two A matrices in this expression and using AsverA°dd = (0 we obtain the
lowest-order correction to the correlation function in the presence of disorder
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(4.16)

I(z,y;t) = G(z,y;t) — GO(z,y;¢)
n n-—l
— Z Z |Al AevenAodd)Am(AevenAodd)A‘n - m| y )
=0 m=0
n n-—l
+ Z Z lAl AevenAodd)Am(AevenAodd)An - m‘ y > .
=0 m=0

Here G(©)(z,y;t) denotes the correlator of the ordered system with p = 1/2 and n = t — 2. Some calculation shows
that I'(z,y; t) can be expressed in terms of a sum of three-point correlation functions of the ordered system:

,y,t)—162h21/ Z[n— v(z,y;m)

+D, (z,y;m)|D, (0,0;m + 1) (4.17)
with
Dy(z,y;k) = (x| (A5 — Ag*!) |y +2v), (4.18)
D,(z,yik) = (= |(45" /2 - Ak y+2w) . (419)

Multiplying Eq. (4.17) by p(1—p) yields the lowest-order
correction to the averaged two-point correlation function.
It is easy to compute the exact autocorrelation func-
tion G(0,0;t) if h(2v) = 024,0, ie., in the absence of
disorder correlations. From Egs. (4.17), (4.18), and (C7)
one obtains
G(0.0:1) = 2\ qo
(0,0,t)—(1+40’ 2t—1)G (0,0;¢) . (4.20)
For large times this has the expected form (3.8) and (3.9)
for D = 1 and variance 40%: G(0,0;t) ~ (4mwDot)~1/?
with Dy = 1 — 402.

The behavior of the correlation function for 7 # 0 and
in the presence of disorder correlations becomes more
transparent after a Fourier-Laplace transformation. The
discrete Fourier-Laplace transform (see Appendix B) of
GO (z,y;t) is given by

1
1—e“cos2k

S(k,w) = (4.21)

while Fourier-Laplace transformation of I'(z, y; t) yields

= sin?
(k) = T - i)
—L(k,w)]S(k,w) . (4.22)
The function
Lk,w)=+V1—ev i h(2v) cos (2ikv)
v=1
—w/2 |2v|

on the rhs of Eq. (4.22) is the contribution of the disor-
der correlation function k(2v) to the generalized diffusion
constant. We would like to stress that up to this point
all results are exact first-order contributions, i.e., valid
for arbitrary integer values of » and ¢ > 0 and arbitrary
values of k and w > 0.

[

First we study the low-frequency behavior. In the limit
w,k — 0, keeping w/k? fixed, S(k,w) becomes the well-
known quantity

1

S(k,w) = Y (4.24)
while for the first-order correction (4.22) we obtain

= 4k?

Y(k,w) = pyr) [0? ——\/_hm aL(ka,wa?)|S(k,w) .

(4.25)

From this expression we realize that the contribution of
disorder correlations vanishes if their correlation length
is finite. Furthermore, if they decay with a power law
h(2v) ~ |2v 4+ 1|72, then its contribution still vanishes
for a > 0. a = 0 means that all fluctuating hopping rates
P2z would be equal to some quantity p¥*® and all po,_,
would be equal to p°¢ and the averaged correlation func-
tion would be an average over semihomogeneous models
with different hopping rates at even and odd time steps.
On the other hand, @ = oo corresponds to completely
uncorrelated choices of the hopping rates. Only if the
disorder correlations are such that they are finite (non-
vanishing) on an infinite number of points do they give
a finite contribution to the averaged correlation function
in the infinite time limit. Here the term “inifinite” is
understood as proportional to the length L in the ther-
modynamic limit L — co. This result is equivalent with
the ergodicity of u. Hence the result of De Masi et al. is
valid for the vertex model at least up to lowest nontrivial
order in perturbation theory.

Now we focus on the behavior for w, k small, but finite.
We expand % (k,w) up to order /w. For uncorrelated dis-
order, L(k,w) = 0, we recover the result (3.11) of Refs.
[18]-[20] by expanding cosk and exp (—w) to first order
in their respective arguments. In this case the general-
ized diffusion constant does not depend on the frequency.
This changes for correlated disorder. Assuming a decay
of the form h(2v) = o2 exp (—|2v|/€) one obtains for the
correction

e 2WVe+HET) _ cos 2k

L(k,w) ~ 0%y/w

cosh (2y/w + 26-1) — cos 2k
(4.26)
For 1 <« ¢ < w™/2 this expression becomes
-1
~ g2 2
(kw)~a\/”€2+k2—)a\/<:£. (4.27)
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This piece is independent of k for low frequencies k o< /w.

w™1/2 plays the role of a crossover length scale where
the correlation function changes its behavior. For 1 «
w™1/2 &« ¢ one obtains a k-dependent contribution in

order /w:

~ 52 Vw 5w
Lk,w)~o \/u_)w+k2_aw+k2 .

(4.28)

For a decay of the disorder correlations of the form
h(2v) ~ o22v|"*exp(—|2v|/€) the contribution of
L(k,w) to D(k,w) is small for a > 1, i.e., smaller than of
order /w. In this situation the contribution of the disor-
der correlations can be neglected and the system behaves
as it was uncorrelated.

For 0 < a < 1 and £2J+/w the disorder contribution
is larger than of order /w, giving rise to a qualitative
change in the frequency dependence of the diffusion con-
stant and leading also to a k dependence.

For a =1 and £ = oo one finds

L(k,w) = %\/u_.:ln 1+ e"2WHTY) _ 9e=(@HE™) ¢og 2k)

(4.29)

from which the various limiting cases can be easily de-
rived. Our results show that with decreasing disorder
correlations ¥(k,w) increases until one reaches a = 1.
For a stronger decay only the variance o2 of the distri-
bution function is relevant.

V. CONCLUSION

We have studied systems of particles hopping stochas-
tically on lattices of arbitrary dimension with space-
dependent hopping probabilities. We demonstrated how
to exploit non-Abelian symmetries of such models for the
derivation of duality relations which express complicated
correlation functions in terms of other correlators which
are easier to compute. This was done in detail for SU(2)-
invariant dynamics [see (2.27] and (2.34)] generalizing
earlier work on the symmetric simple exclusion process
(1,2]. Examples of such models are discussed in Secs.
ITI-IV and include partial exclusion processes and vertex
models.

We have shown that in all SU(2)-symmetric models
the two-point and three-point density correlation func-
tions in the steady state with NV particles are given by
the probability distribution in space of a single parti-
cle moving in the same, generically disordered and time-
dependent, environment [see Eq. (2.33)]. The exclusion
interaction determines only the amplitude of the corre-
lation function. Furthermore, these correlation functions
do not change if one allows for simultaneous hopping of
more than particle. The time evolution of the density
profile depends only on correlation functions of /-particle
systems where [ is not larger than the maximal number
of particles allowed on each lattice site. For special ini-
tial conditions we obtain more specific results (2.29). For
bosonic systems one finds analogous results (2.38) if the
time-evolution operator commutes with the generators of
the harmonic-oscillator algebra.
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The Fock space formalism we have applied reveals re-
lations to quantum systems. In particular, a classical dif-
fusive system of exclusive particles is shown to be equiva-
lent to a generalized Heisenberg ferromagnet with space-
and time-dependent spin-spin coupling. Here the den-
sity correlation function corresponds to a spin correla-
tion function. For discrete time, the time evolution op-
erator of one-dimensional systems is the transfer matrix
of some higher disordered-vertex models. Total exclusion
is described by the transfer matrix of a six-vertex model
with space-dependent vertex weights. In this mapping,
density correlations correspond to arrow correlation func-
tions.

Focusing on one-dimensional systems we have stud-
ied a version of the random-barrier model with spa-
tially correlated disorder. Its time evolution is given by
the diagonal-to-diagonal transfer matrix of the six-vertex
model with a certain random choice of vertex weights.
We study the steady state and derive expressions (4.17)
and (4.22) for the averaged time-dependent two-point
density correlation function in the N-particle sector in
the presence of weak disorder. These expression are ex-
act in the lowest order of the expansion of the averaged
function in the moments of distribution of the hopping
rates.

We study the thermodynamic limit (infinite length)
and compare our results with known results for systems
defined in continuous time. In the infinite-time limit
t — oo the one-particle probability distribution (which
up to a constant is the density correlation function) turns
out to converge to Brownian motion if disorder correla-
tions decay to zero in space (algebraically or exponen-
tially) and if the mean value 7 of the hopping rates does
not approach 1 as 1/t or faster. The latter case describes
relativistic stochastic motion in a random medium. If p
approaches 1 a phase transition occurs where the dynam-
ical exponent changes from z =2 to z = 1.

Considering fixed (time-independent) hopping rates
and large but finite times, we compare our results for
correlated disorder with other known results for uncorre-
lated disorder. If the correlation length £ of the disorder
correlations is finite or if the correlations h(r) have in-
finite range but decay faster than r—!, the contribution
of the disorder correlations becomes negligibly small for
large times and the system behaves like the system with
uncorrelated disorder. For infinite-ranged disorder with
a slower decay, h(r) ~ r~* where 0 < a < 1, the correla-
tion function changes its behavior even after long times
and the generalized diffusion constant D(k,w) becomes
k dependent even in the lowest order of the expansion.
For uncorrelated disorder the diffusion constant depends
only on w in this approximation.

The most important problem left open in our work is
a systematic approach to the study of duality relations
arising from non-Abelian symmetries.
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Deutsche Forschungsgemeinschaft (G.S.) is gratefully ac- Because of the normalization condition (2.6) the second
knowledged. term on the rhs of Eq. (A7) is equal to & (1[\‘,) Thus
(A7) results in the following recursion relation:

APPENDIX A: RECURSION RELATION
_L-N-1N+1

FOR THE TWO-POINT FUNCTION G%T; (.’E,y; t) =7 TGN (:1:, y;t)
Starting from Eq. (2.21) for the N-particle correlation 1N+1
function and assuming the symmetry (2.13) we will prove +f L_-N (A8)
the recursion relation (2.22). For this we will use the
following equations which can be proved easily:
S_i N > - (N + 1)| N+1 >, (Al) APPENDIX B: DUALITY RELATION
c}l N)=nj|N+1), (A2) We will prove the duality relation (2.27). For M < N

(A3) Eq. (2.27) is a triviality since both sides vanish. In case

IN)=(1-n;)|N-1),
&l V) =(1=n;)] ) M = N Eq. (2.27) follows directly from the form (2.27).

+ -
STIN)=(L-N+1)|N-1), (A4) The nontrivial case M > N is to be proved.
[nj,S7]- = c} . (A5) Starting from
Writing down an expression similar to (2.21) for Ggf,:_ml
and using Eq. (A1) it results Pa,[Am(t) D An] = < M l__[ n;U; H n;| M >
L ‘ i€EAN JEAM
w1 () e -

_ _ and using the definition (2.17) of the states | M ) as well
= (N +1insUimyST|N) . (A6) as the Hermiticity of the operators occurring in (B1) we

By means of Eq. (A5) we obtain find

Pa, [Am(t) DA
(N+1) (Nﬁ_l)GgsTi(E,y;t) an[AM(t) D An]

1
= —— ; ST M-—-1 . (B2
=(N+1|S " nUpny| N) M<M ,H "’Ui_H " > (B2)
JEAM 1€AN
+H(N +1|clUny| N)
+(N +1|nUpcl| N) .

Because of (A2)—(A4) this results in [H n; , S‘:l = Z cl H n; . (B3)
i€EAN k€AN  i€cAn\k

The following commutator is easily computed:

L ferm .
N (N + 1) G (= u:t) From (A2) and (B3) we get

Hni,S”} |IM-1)=N [[ mIM) . (B4

iI€EAN i€AN

= (L= N =1) () GE™(e050) + (N Uy )

(A7)  Using this we find from (B2)
J

1 _ N
Pa,[Am(t) D Ax] = M< M| [ nsUes™ I me| M1 > + 37 Pau[Am () D AN] (B5)
JEAM i€EAN

i.e., since S~ commutes with H

H n;S U, H n;

JEAM iI€EAN

(M — N)Pa,, [Am(t) D Ay] = < M M-1 > : (B6)

Using (B3) and (A3) we derive the following expression similar to (B4):

(M | [Hnj,S“] =Y (M-1ji-n) [[ ni= D (M=-1] ] n , (B7)

JEAM k€EAM JEAM\K k€EAM JEAM\K

where we have used ( M — 1 |[];c4,, 7; = 0, which is obvious, because ( M —1 | is a state with M — 1 particles only.
Inserting (B7) into (B6) results in
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PAM[AM(t) o) AN] =

MiN > <M—1

IT wve [T w{m-1)

kEAM JEAM\K 1€EAN
1
= m Z PBM_l[BM—l(t) o) AN]: (B8)
By-1CAM

where the Bps_; are sets with M — 1 sites. Repeating the above procedure leads to

PAM[AM(t)DAN]=W_E—N“ﬁ Z E

BNCBN41 BN+1CBNy2

= Z Pg,[Bn(t) = AN] .
BNCAM

Here we used the fact that C and = mean the same for
sets of equal cardinality. The prefactor cancels with the
number of multiple countings of the set By in the sums.
Since for sets of equal cardinality the duality relation
(2.27) is known to be true [because of Eq. (2.28)], i.e.,
PBN[BN(t) = AN] = PAN [AN(t) = BN], we find

PAM[AM(t) D AN} = PAN[AN(t) C Aml,

which is the relation to be proved.

(B10)

APPENDIX C: THE SIX-VERTEX MODEL
AS A DISORDERED DIFFUSIVE SYSTEM

Here we repeat the mapping of Ref. [25] of a one-
dimensional diffusion problem to a six-vertex model and
generalize it to a version of the random-barrier model.
Consider the six-vertex model on a diagonal square lat-
tice defined as follows: Place an up- or down-pointing
arrow on each link of the lattice and assign a nonzero
Boltzmann weight to each of the vertices shown in Fig.
1. (All other configurations of arrows around an inter-
section of two lines, i.e., all other vertices, are forbid-
den.) The partition function is the sum of the products
of Boltzmann weights of a lattice configuration taken over
all allowed configurations. In the transfer-matrix formal-
ism up- and down-pointing arrows represent the state of
the system at some given time ¢ (Fig. 1). Each row of
a diagonal square lattice is built by M of these vertices.
Corresponding to the M vertices there are L = 2M sites
in each row. The configuration of arrows in the next row
above (represented by the upper arrows of the same ver-
tices) then corresponds to the state of the system at an
intermediate time ¢t' = ¢t+1/2, and the configuration after
a full time step t"” = ¢t+1 corresponds to the arrangement
of arrows two rows above. Therefore each vertex repre-
sents a local transition from the state given by the lower
two arrows of a vertex representing the configuration on
sites j and j + 1 at time ¢t to the state defined by the
upper two arrows representing the configuration at sites
j and j + 1 at time ¢ + 1/2. The correspondence of the
vertex language to the particle picture used in Sec. IV
can be understood by considering up-pointing arrows as
particles occupying the respective sites of the chain while
down-pointing arrows represent vacant sites, i.e., holes.

The diagonal-to-diagonal transfer matrix T acting on
a chain of L sites (L even) of the six-vertex model with

> Ps,[Bn(t) D An]
Bym-1CAM

|
space-dependent vertex weights as shown in Fig. 1 is
then defined by [32]

L/2  LJ2

T = H Ts; H Tpj—1 = Tever T4 | (c1)
ij=1 =1

The matrices T; act nontrivially on sites 7 and j + 1 in
the chain, on all other sites they act as unit operator. All
matrices T; and T with |j — 5| # 1 commute. For an
explicit representation of the transfer matrix we choose
a spin-% tensor basis where the Pauli matrix o} acting
on site j of the chain is diagonal and spin down at site j
represents a particle (up-pointing arrow) and spin up a
hole (down-pointing arrow). In this basis n; = (1 —07)
is the projection operator on particles on site j and sji =
3(0F £ic¥) (0®¥* being the Pauli matrices) create (s7)
and annihilate (s;-") particles, respectively. The matrices
T; in this basis are defined by

10 0 0

- Ol—pj Dj 0

Ti=lo p, 1-p;0 (C2)
00 0 1

In the particle language the matrices T; describe the
local transition probabilities of particles moving from site
J to site j + 1 represented by the weights of the corre-
sponding vertices. With these identifications the vertex
model with a random choice of the numbers p; in the
interval 0 < p; < 1 becomes a discrete-time version of
the random-barrier model.

The transfer matrix acts in parallel first on all odd-even
pairs of sites (2j — 1,2j), then on all even-odd pairs. In
a model with transfer matrix 7' = T°94Teven one would
start the time evolution at an intermediate half odd in-
teger time step and there will be no difference in the
physical properties of these two systems. We assume pe-
riodic boundary conditions, i.e., we identify site L + 1
with site 1.

In the one-particle sector the transfer matrix has a
simple form. We denote by | z ) the state with the par-
ticle being on site z and ( z | is its transposed. The
scalar product on this space is given by ( z |y) = 8,4
(0z,y is the Kronecker symbol) and the unit operator is
1 =3 _| =z )( x| The transfer matrix A restricted to
the one-particle sector reads
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L/2 L/2
A= A4 =" A5i(p2;) ) Azjo1(p2j-1)
i=1 i=1

(C3)
with local transfer matrices
Aj(p;) =13 Ndl+1i+1)(j+1]
-pi(l3)=1i+1NW51-(i+1]) . (C4)

The steady state with eigenvalue 1 of A is the vector
(a|=L"Y2Y_|z) and|a), which is ( s | restricted
to the one-particle sector, is its transpose. The particle
number operator n, is simply given by n, = | z }{ z |
and the correlation function (4.3) is the matrix element
(z |At y ) = (AY),,y of At. This power is defined in the
same way as T*:

J

ift=k

Ak
t
A"{ ift=k+1/2 .

Aodd 4k (C5)
With these definitions one can immediately derive a re-
cursion relation for G(z, y;t) with respect to z and t. We
have for integer values of t = k

Gz, gt +1/2) = (z]A°4A" y) . (Cs)

Inserting Eq. (C4) into this expression gives the recursion
relations (4.4) and (4.5) of Sec. IV.

The time-dependent connected two-point correlation
function for the homogeneous model with p = 1/2 was
computed by Kandel et al. [25] for full time steps in
the continuum limit L — oco. We quote their result and
the corresponding expression for half-odd integer time
intervals which are used in Sec. IV. One obtains the
following with r =z — y and p = N/L.

For t an integer

@ Cnten=s1-9) (3) (H74), myevn (©"
(b) Cw(,u3t) = p(1 — p) (%)% (t Jﬁ: 11)/2> . zodd, y even (C8)
© onteut=pi-0 (5) (1, 271)2), zeven voud (©9)
@ onteu=pt -0 (5) (74), mvod (1)
For ¢ a half odd integer
@ exun=pi-n (3) (L 20h). mueen (o)
(b) Cw(,y;) = p(1 - p) (%)m (fi;/g) , zodd, yeven (C12)
(c) Cn(@y;t) = p(1— p) (%) ) (tzﬁ;/lz) , zeven, y odd (C13)
@ onteu=p1 -0 (3) (1, 270))0 mvea (o)
Because of the distinction of right and left movers and So(k,t) = p(1 - p) (cosk)** . (C16)

full and half time steps we have to define carefully Fourier
and Laplace transforms of space and time-dependent cor-
relation functions. We define the dynamic structure func-
tion S(k,t) as the sum of Fourier transforms of the two-
point correlation function between right movers and left
movers:

S(k,t) = Y _e**[C(2z,0;¢) + C(22 + 1, 15¢)].  (C15)

From (C7) one obtains for the correlation function
Cn(z,y;t) of the ordered system with p = 1/2 at integer
times

The discrete Laplace transform of a time-dependent
quantity f(t) is defined as the sum

oo

flw)y=73 e (1)

t=0

(C17)

over full time steps only. For the dynamic structure func-
tion (C16) we obtain

1

Solk,w) = T S cos kY2

(C18)
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